
Slice Finder: Automated Data Slicing for Model Interpretability
Yeounoh Chung, Tim Kraska

Brown University
{yeounoh_chung,tim_kraska}@brown.edu

Steven Euijong Whang∗, Neoklis Polyzotis
Google Research

{swhang,npolyzotis}@google.com

ABSTRACT
As machine learning (ML) systems become democratized,
helping users easily debug their models becomes increasingly
important. Yet current data tools are still primitive when it
comes to helping users trace model performance problems
all the way to the data. We focus on the particular prob-
lem of slicing data to identify subsets of the training data
where the model performs poorly. Unlike general techniques
(e.g., clustering) that can find arbitrary slices, our goal is to
find interpretable slices (which are easier to take action com-
pared to arbitrary subsets) that are problematic and large.
We propose Slice Finder, which is an interactive framework for
identifying such slices using statistical techniques. The slices
can be used for applications like diagnosing model fairness
and fraud detection where describing slices that are inter-
pretable to humans is necessary.

1 INTRODUCTION
Machine learning (ML) systems [3] are becoming more preva-
lent thanks at least in-part due to improvements in state-of-
the-art performance on common tasks. However, the data
tools for interpreting and debugging models have not caught
up yet [5], and ML training tends to be a black box process
requiring trial and error until the model performs satisfacto-
rily. The problem becomes increasingly difficult as the size
of data increases. The challenges for model interpretability
are broad. One example is measuring feature attribution to
model performance (e.g., how much impact does feature foo
have on my deep model?). Another example is measuring
model fairness (e.g., is the model discriminating a certain
demographic?).

An important challenge in model interpretation is which
slices of the data are causing the model to have poor met-
ric values (e.g., a high loss) making them problematic. The
challenge is that, although the model may appear to be per-
forming well overall, it may not on smaller data slices [8].
To capture the model’s behavior on slices, ML practitioners
commonly use a few manually-defined slices to avoid serving
models that sacrifice the model performance on these slices
∗Corresponding author

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SysML, February 2018, Stanford, California USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

for better overall performance. However, this approach re-
quires domain expertise to find the right slices and may not
scale if there are many features. In addition, the number
of possible slices is exponential to the number of examples,
making an exhaustive approach of considering all slices in-
feasible as well.

Slice Finder addresses the data slicing problem by applying
data management techniques to efficiently discover the top-
K largest slices that are interpretable and problematic. The
interpretability is necessary to provide insight to the user
and enable further action (e.g., cleaning the data). For ex-
ample, a slice of customers who are female and live in India
(expressed as gender = Female ∧ country = IN) is more inter-
pretable than a cluster of 10 people {x1,x2, · · · ,x10}. A slice
also needs to be problematic in the sense that its effect size
(defined in Section 2 and captures how differently the model
performs compared to other data) is larger than a threshold
that can be adjusted. Slice Finder can be used as a preprocess-
ing step that guides the user to narrow down on slices with
the above properties on which more sophisticated analyses
(e.g., measuring model fairness [6]) can be performed.

2 PROBLEM DEFINITION
We assume a dataset D containing examples and a model M.
Each example contains features (e.g., country) where each
feature has a list of values (e.g., {US, DE}). We denote the
entire set of possible features as F . A model is a function
that receives an example and outputs a prediction. We also
assume a metric ψ that returns a score for each example by
comparing M’s prediction p with the example’s label y. For
example, if ψ measures log loss, it is y log p + (1−y) log (1−p).

A slice S is a subset of examples in D with common fea-
tures and can be described as a conjunction of the common
feature-value pairs

∧
i Fi = vi where the Fi ’s are distinct (e.g.,

country = DE ∧ gender = Male). For numeric features, we dis-
cretize their values and generate ranges so that they are
effectively categorical features (e.g., age = 20-30).

A slice is problematic if the metric values between the
slice and its counterpart slice have an effect size larger than
a given threshold T . The definition of a counterpart slice
depends on the problem being solved. If we are evaluating
a single model, then the counterpart can be defined as the
slice containing all the other examples not in S. If two models
are being compared, the counterpart is the same slice S, but
using the other model. If there is one model, but two model
serving datasets are being compared, the counterpart is the
slice in the other dataset. The effect size [1] is a standardized
mean difference between two populations (e.g., gender = Male
vs. gender = Female):

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 ×
µS − µSc

σS + σSc
(1)

where µS is the mean value of ψ for S, σS is the standard
deviation, and Sc is the counterpart slice of S. The threshold
T can be set using known conventions (e.g., Cohen’s con-
vention [4] considers 0.2 to be small, 0.5 medium, 0.8 large,
and 1.3 very large). While effect size can be replaced with
any other measure, it is good at measuring the size of the
difference regardless of slice sizes.

When measuring interpretability, we assume that the fewer
the features crossed for describing a slice, the more inter-
pretable. For example, country = DE is more interpretable
than country = DE ∧ age = 20-40 ∧ zip = 12345. More sophis-
ticated measures (e.g., taking into account the semantics of
features) can be used as well.

Definition 2.1. The data slicing problem is defined as finding the
top-K largest slices such that:

• Each slice has an effect size at least T and
• No slice can be replaced with another with the same size,
but with fewer features.

Note that the top-K slices do not have to be distinct, e.g.,
country = DE and education = Bachelors overlap in Germans
with a Bachelors degree.

3 SLICE FINDER
We now describe the Slice Finder system. The input is the
training data, a model, and an effect size threshold T . As a
preprocessing step, Slice Finder takes the training data and
discretizes numeric features. For categorical features that
contain too many values (e.g., IDs are unique for each ex-
ample), Slice Finder uses a heuristic where it considers up to
N most frequent values and places the rest into an “other
values” bucket. The possible slices of these features form a
lattice where a slice S is a parent of every S with exactly one
more feature-value pair.

Slice Finder finds the top-K largest problematic slices by
iterating the slice lattice in a breadth-first manner using a
priority queue. The priority queue contains the current slices
being considered sorted by descending size and then by as-
cending number of features. For each slice

∧
i ∈I Fi = vi that

is popped, Slice Finder checks if it has an effect size at least
T . If so, the slice is added to the top-K list. Otherwise, the
slice is expanded where the slices {

∧
i ∈I Fi = vi ∧G = v |G ∈

F − {F1, . . . , F |I |},v ∈ G ′s values} are added to the queue. Slice
Finder optimizes this traversal by avoiding slices that are sub-
sets of previously generated slices. This process repeats until
either the top-K slices have been found or there are no more
slices to explore.

Example. Suppose there are three features A, B, and C
with the possible values {a1} and {b1,b2}, and {c1}, respec-
tively. Also say K = 2, and the effect size threshold is T .
Initially, the priority queue Q contains the entire slice. This
slice is popped and expanded to the slices A = a1, B = b1, B =
b2, and C = c1, which are inserted back into the queue. Among

them, suppose A = a1 is the largest slice with an effect size at
least T . Then this slice is popped from Q and added to the
top-K result. Suppose that no other slice has an effect size at
least T , but B = b1 is the largest. This slice is then expanded
to B = b1 ∧ C = c1 (notice that B = b1 ∧ A = a1 is unnecessary
because it is a subset of A = a1). If this slice has an effect size
at least T , then the final result is [A = a1, B = b1 ∧ C = c1].

We can show that the Slice Finder slices satisfy Defini-
tion 2.1 using proof-by-contradiction.

Slice Finder also provides a configurable slider for adjusting
T , which can be done through a UI. If T decreases, then we
just need to reiterate the slices explored until now to find
the top-K slices. If T increases, then the current slices may
not be sufficient, so we continue searching the slice lattice.

Slice Finder can be used along with visualization tools for
the slices. State-of-art tools include Facets [2], which can be
used to discover bias in the data, and MLCube [7], which
provides manual exploration of slices and can both evaluate
a single model or compare two models. While the above tools
are manual, Slice Finder complements them by automatically
finding slices.

4 USE CASES
We present some motivating applications for Slice Finder .

Model Fairness. Due to biases in training data, models
can perform worse on certain demographics. For sensitive
attributes (e.g., gender), such difference can be viewed as
discrimination. The interpretable slices produced by Slice
Finder combined with model fairness metrics [6] can be used
to quickly identify parts of the training data that need to be
augmented with more data collection.

Fraud Detection. Finding fraudulent users involves iden-
tifying demographics where a model is not performing as
well as it previously did. For example, some fraudsters may
have gamed the system with unauthorized transactions. Here
Slice Finder can be used to identify the slices for two datasets
where the same model performs most differently.

Anomaly Detection. Although Slice Finder assumes a model,
the data slicing problem can be more general where it uses
any scoring function instead of a model. For example, the
scoring function can reflect the number of anomalies and take
into account temporal aspects such as how recently they oc-
curred. Finding anomalies in data and identifying slices that
contain relatively more anomalies is important for ensuring
data quality in ML pipelines.

REFERENCES
[1] 2017. Effect Size. (2017). https://en.wikipedia.org/wiki/Effect_size
[2] 2017. Facets Overview. (2017). https://research.googleblog.com/2017/07/

facets-open-source-visualization-tool.html
[3] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel,

Chuan Yu Foo, Zakaria Haque, Salem Haykal, Mustafa Ispir, Vi-
han Jain, Levent Koc, et al. 2017. TFX: A TensorFlow-Based
Production-Scale Machine Learning Platform. In Proc. of ACM
SIGKDD. 1387–1395.

[4] Jacob Cohen. 1988. Statistical power analysis for the behavioral
sciences . Hilsdale. NJ: Lawrence Earlbaum Associates 2 (1988).

https://en.wikipedia.org/wiki/Effect_size
https://research.googleblog.com/2017/07/facets-open-source-visualization-tool.html
https://research.googleblog.com/2017/07/facets-open-source-visualization-tool.html

[5] F. Doshi-Velez and B. Kim. 2017. Towards A Rigorous Science
of Interpretable Machine Learning. ArXiv e-prints (Feb. 2017).
arXiv:stat.ML/1702.08608

[6] Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equality
of Opportunity in Supervised Learning. In Advances in Neu-
ral Information Processing Systems 29: Annual Conference
on Neural Information Processing Systems 2016, December 5-
10, 2016, Barcelona, Spain. 3315–3323. http://papers.nips.cc/paper/
6374-equality-of-opportunity-in-supervised-learning

[7] Minsuk Kahng, Dezhi Fang, and Duen Horng Polo Chau. 2016.
Visual exploration of machine learning results using data cube
analysis. In Proceedings of the Workshop on Human-In-the-Loop
Data Analytics. ACM, 1.

[8] H Brendan McMahan, Gary Holt, David Sculley, Michael Young,
Dietmar Ebner, Julian Grady, Lan Nie, Todd Phillips, Eugene
Davydov, Daniel Golovin, et al. 2013. Ad click prediction: a view
from the trenches. In Proc. of ACM SIGKDD. 1222–1230.

http://arxiv.org/abs/stat.ML/1702.08608
http://papers.nips.cc/paper/6374-equality-of-opportunity-in-supervised-learning
http://papers.nips.cc/paper/6374-equality-of-opportunity-in-supervised-learning

	Abstract
	1 Introduction
	2 Problem Definition
	3 Slice Finder
	4 Use Cases
	References

